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1 Introduction

1.1 Outline

In this paper we introduce the concept of boundary integral equation formulations for
suitable partial differential equations and a numerical solution approach, the boundary
element method. We are primarily concerned with the wave equation for single frequen-
cies, the Helmholtz equation. The Helmholtz equation governs single frequency sound
fields inside a body or outside of an arbitrary number of bodies positioned in free space.
We derive the Helmholtz equation from the Wave equation and introduce necessary con-
ditions for the uniqueness of its solution in the exterior case. Then we develope the
boundary integral formulation for the Helmholtz equation and a simple numerical solu-
tion routine, the collocation method. We attend to the non-uniqueness problem of the
direct boundary integral formulation with an augmented equation, the Burton-Miller
formulation. The direct and the Burton-Miller formulation have numerically difficult
(hyper-)singular integrals. We present a nonsingular analytical reformulation of those
integrals for the collocation method case. A boundary element collocation solver for the
Helmholtz equation with graphic user interface has been implemented in the framework
of this paper. Observations made with this solver segue to open problems with the
Burton-Miller formulation and further reading.

1.2 Motivation

The problem of incident acoustic waves being scattered by objects or the acoustic radi-
ation from objects into the acoustic medium or a combination of both is an important
problem in physics and engineering. Real world problems are for example the design
of acoustic barriers for highways, the acoustic design of the interior of cars or the en-
geneering of loudspeakers. In contrast to the well-known finite difference methods or
finite element methods, it is necessary to discretize only the boundary of the domain
of interest for the boundary element method. The boundary element method therefore
effectively has the advantage of reducing the dimensionality of the promblem by one.
This advantage is further exemplified in the exterior scattering and radiation case. When
simulating a loudspeaker in an anechoic environment via the BEM for example, the gov-
erning equation for the sound field in the infinite environment has to be solved only for
the finite surface of the loudspeaker itself. This results in a highly reduced number of
degrees of freedom for the numerical method.
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2 Preliminaries

Throughout this text the domain is denoted U and is three-dimensional. U is always
assumed to be simply connected and closed. Vectors are bold, for example r ∈ U ,
except in directional derivatives, e.g. ∂

∂r . The vector p ∈ U will be referred to as the
observation point. The vectors np and nq are the unit normals to the boundary at p,
q ∈ ∂U respectively. The normals point from ∂U into U . Note that in some references,
the normals are assumed to point into the opposite direction.

2.1 Laplace operator

Throughout this text the expression ∇2 signifies the Laplace operator, which in three-
dimensional cartesian coordinates is:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

2.2 Dirac delta function

The Dirac delta function or δ-function can be considered a generalized function on the
real line, which is equal to zero for all real numbers exept at zero and whose integral
over its domain is one.

δ(x) :=

{
+∞, x = 0

0, x 6= 0
, x ∈ R

∫ ∞
−∞

δ(x) dx = 1

An important property of the delta function is the so called sampling property.∫ ∞
−∞

f(x) δ(x− a) dx =

∫ ∞
−∞

f(x) δ(a− x) dx = f(a), ∀a ∈ R

[Hos09, page 34]

The δ-distribution on Rn:

δ(x− a) := δ(x1 − a1) · δ(x2 − a2) ·... ·δ(xn − an), x, a ∈ Rn

The sampling property holds also for the n-dimensional δ-distribution.
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2.3 Green’s second identity

It holds for twice continuously differentiable scalar functions ψ and φ on U .∫
U

(φ(q)∇2ψ(q)− ψ(q)∇2φ(q)) dq =

∫
∂U

(
ψ(q)

∂φ(q)

∂nq
− φ(q)

∂ψ(q)

∂nq

)
dq

Note that in the case of normals pointing into the complement of U , the signs on one
side would change [Ruo13, page 109].
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3 Boundary integral equation formulations

In this section the concept of boundary integral equation formulations is intruduced via
the example of the homogenous Laplace equation.

∇2φ(p) = 0, ∀p ∈ U

A Green’s function G(p,q), also called fundamental solution, for the Laplace equation
is an equation, which satisfies:

∇2G(p,q) = −δ(p− q), ∀p,q ∈ U

It is verifiable that G(p,q) = 1
4π ·

1
‖p−q‖2 satisfies above requirement. Note that G(p,q)

is singular for ‖ p− q ‖= 0 with a first order pole. This prevents us from inserting the
Green’s function into Green’s second identity directly. Therefore G(p,q) is modified as
follows [Bin, page 78]:

Gε(p,q) =
1

4π
· 1

‖ p− q ‖2 +ε
, ε > 0 (3.1)

Inserting (3.1) into Green’s second theorem leads to:∫
U

(φ(q)∇2Gε(p,q)−Gε(p,q)∇2φ(q)︸ ︷︷ ︸
=0

) dq =

∫
∂U

(
Gε(p,q)

∂φ(q)

∂nq
− φ(q)

∂Gε(p,q)

∂nq

)
dq

For lim ε→0 the above turns into:

−
∫
U

φ(q)δ(p− q) dq =

∫
∂U

(
G(p,q)

∂φ(q)

∂nq
− φ(q)

∂G(p,q)

∂nq

)
dq

Finally by the virtue of the δ-distributions sampling property, we arrive at the boundary
equation formulation for the homogenous Laplace equation.

φ(p) =

∫
∂U

(
φ(q)

∂G(p,q)

∂nq
−G(p,q)

∂φ(q)

∂nq

)
dq

7



4 The Helmholtz equation

In this section our partial differential equation of interest is introduced via the homoge-
nous wave equation.

4.1 The Wave equation

We assume that the acoustic medium is a homogenous and isotropic fluid. The acoustic
pressure field in such a medium is governed by the linear wave equation

∇2p− 1

c2

∂2p

∂t2
= 0,

irrespective of the shape of the domain, where p is the time-dependent acoustic pressure
and c the speed of wave propagation [Kir98, page 12]. The vector valued time-dependent
particle velocity u is governed via a similar linear wave equation

∇2u − 1

c2

∂2u

∂t2
= 0.

It is generally is not easy, when having already solved for one unknown, u or p, to find
the other quantity. Therefore it is more convenient to solve the wave equation for an
abstract scalar field velocity potential of the form [EEH69, page 168]:

∇2Ψ− 1

c2

∂2Ψ

∂t2
= 0 (4.1)

When the sound pressure p or the particle velocity u are sought, they can be directly
calculated with the following two equations, that relate them to the velocity potential
Ψ:

u = ∇Ψ

and

p = −ρ ∂
∂t

Ψ,

where ρ is the density of the medium.

4.2 Deriving the Helmholtz equation

In this text only periodic solutions of the wave equation are considered and a separability
of variables in the velocity potential Ψ(x, t) is assumed. Therefore the time-dependent
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velocity potential Ψ(x, t) can be broken down into a sum of components, each of the
form

ψ(x, t) = Re(φ(x)e−iωt), x ∈ U, (4.2)

ω being the angular frequency (ω = 2πv , v is the frequency in hertz) and φ(x) the time-
independent veocity potential [Kir98, page 12]. Expression (4.2) can be substituted into
(4.1), which leads directly to the Helmholtz equation

∇2φ(x) + k2φ(x) = 0,

with k2 = ω2

c2
. k is called the wavenumber. For simplicity only time harmonic (e−iωt

time dependence) acoustic propagation and scattering is considered in the following.
More complex variations in time can be modelled by combining multiple harmonic time
dependences, thus reconstructing the time-dependent velocity potential via Fourier syn-
thesis with single frequency components of the form (4.2).
The relation between the wavenumber k and the frequency of waves in a medium is
determined by its wave propagation speed.

k =
2πv

c
=

2π

λ

The time-independent sound pressure p(x) and time-independent particle velocity u(x)
relate to the time-independent velocity potential φ via

u = ∇φ(x)

and

p(x) = −ρ ∂
∂t
φ(x) = iρωφ(x),

where ρ is the density of the medium. For reference for the two equations above, see
[Juh94, page 18] and [Kir98, page 12] respectively.
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4.3 Domain considerations

nq

U

∂U

q

Figure 4.1: Interior acoustic problem

n nq

U

∂Usphere

∞
∂Uq

r

Figure 4.2: Exterior acoustic problem

We distinguish two types of acoustic problems, the interior and the exterior case. In
the three-dimensional interior case the domain can be thought of as the volume enclosed
inside a shell (figure 4.1). In the three-dimensional exterior case the domain can be mod-
elled as the volume outside of closed geometries, further bounded by an infinite sphere
(figure 4.2). A physical approach dictates, that no sound radiation is returned from
the infinite distance (the boundary of the outer sphere ∂Usphere) into the domain. This
assumption is modelled by the Sommerfeld radiation condition, which can be thought
of as a boundary condition at infinity.

4.4 Impedance boundary condition

By the end of this paper, we will have derived a boundary element method for the
Helmholtz equation on arbitrary connected closed three-dimensional domains with gen-
eral boundary conditions:

a(q)φ(q) + b(q)
∂φ(q)

∂nq
= f(q), q ∈ ∂U,

with a, b and f being complex-valued functions, defined on the boundary. Clearly
a(q) = b(q) = 0 for any q ∈ ∂U is not admissible. The most relevant boundary
condition for physical modelling is the impedance boundary condition [CL07, page 4]:

∂φ(q)

∂nq
+ ikβφ(q) = f(q)
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β is the relative surface admittance of the boundary at the specified frequency (or
wavenumber). f is zero for pure scattering problems and nonzero, where there is a
radiating boundary. For β = 0 and f = 0 we have Neumann boundary conditions:

∂φ(q)

∂nq
= 0 (4.3)

Surfaces with Neumann boundary conditions are called sound hard or fully reflective.
As ∂φ(q)

∂nq
can be interpreted as the surface particle velocity of the boundary at q [Kir98,

page 73], (4.3) basically states that the particles at q travel into the boundary with the
same velocity as they are travelling into the opposite direction.

4.5 Sommerfeld radiation condition

”The sources must be sources, not
sinks of energy. The energy which is
radiated from the sources must scatter
to infinity; no energy may be radiated
from infinity into ... the field.”

Arnold Sommerfeld

Generally in exterior radiation problems, it is assumed that the energy is only outgoing
into the distance and not being reflected. As the homogenous helmholtz equation does
not imply a damping behaviour for the solution φ, an unphysical resonance in the do-
main could occur. Therefore two boundary conditions at infinity are imposed to ensure
that all energy is going outward and is spread. These boundary conditions are called
the Sommerfeld radiation and finiteness condition [H.S92, page 393] .

The three-dimensional finiteness condition:

φ(q) = O(r−1)

The three-dimensional radiation condition:

lim
r→∞

r

(
∂φ(q)

∂r
− ikφ(q)

)
= 0, (4.4)

with ∂
∂r being the radial direction derivative and r =‖ q ‖. Note that for r→∞, the

radial derivative ∂φ(q)
∂r equals the negative normal derivative −∂φ(q)

∂nq
for q ∈ ∂Usphere.

A physical basis for the finiteness condition is that the finite outwards travelling energy
is spread over an ever larger and larger sphere surface ∂Usphere of area 4πr2. So the energy
decreases antiproportional to r2. The radiation condition stems from the fact, that in
the far distance the outgoing wave appears locally as a free-air plane wave travelling in
the direction r [CL07, page 6].
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We show now the impact of Sommerfelds conditions on a boundary integral of the
type as in section (3) over the outer infinite sphere surface. It is assumed here, that the
function G also satisfies above conditions. It holds:∫

∂Usphere

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq

=

∫
∂Usphere

(
∂G(p,q)

∂nq
+ ikG(p,q)

)
φ(q)−G(p,q)

(
∂φ(q)

∂nq
+ ikφ(q)

)
dq

(4.5)

It follows, that the integrand on the right-hand side of (4.5) decreases in the order of
o(r−2). As the surface of the sphere increases proportional to r2, the above boundary
integral evaluates to zero for r→∞. This result allows us to omit the integral over the
bounding sphere in exterior radiation and scattering problems and the exterior case will
be handled as such for the remainder of this text.

4.6 Fundamental solutions of the Helmholtz equation

The fundamental solution or Green’s function G(p,q) for the Helmholtz equation is the
equation, which satisfies

(∇2 + k2)G(p,q) = −δ(p− q), p,q ∈ U (4.6)

The following are eligible functions.

G±k (p,q) =
1

4π

e±ik‖p−q‖2

‖ p− q ‖2
(4.7)

[Kir98, page 32]
The so-called outgoing wave Green’s function:

Gk(p,q) =
1

4π

eik‖p−q‖2

‖ p− q ‖2
(4.8)

The so-called incoming wave Green’s function:

G−k (p,q) =
1

4π

e−ik‖p−q‖2

‖ p− q ‖2
(4.9)

Note that (4.9) does not satisfy the Sommerfeld radiation condition. Therefore G or
Gk will always denote the outgoing wave Green’s function (4.8) for the remainder of
this text. We will show the compliance of G with Sommerfeld’s radiation condition in a
following section.

We introduce the following definitions to enable us to break down the derivatives of
G:
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r(p,q) := p− q

r(p,q) :=‖ r(p,q) ‖2
Now G with regard to r(p,q) is:

Gk(r(p,q)) =
1

4π

eikr(p,q)

r(p,q)

4.6.1 Normal derivatives of r

As stated earlier, the vectors np and nq are the unit normals to the boundary at p
and q ∈ ∂U respectively. The normals always point from ∂U into U . Note that in all
instances where ∂r(p,q)

∂nq
will be used, the variable of differentiation is q. Therefore:

∂r(p,q)

∂nq
= −r(p,q) · nq

r(p,q)
(4.10)

The situation is different with ∂r(p,q)
∂np

. The term will appear later in a boundary integral
formulation, which is itself a function of p.

∂r(p,q)

∂np
=

r(p,q) · np
r(p,q)

(4.11)

∂2r(p,q)

∂np∂nq
= − 1

r(p,q)

(
np · nq +

∂r(p,q)

∂nq

∂r(p,q)

∂np

)
(4.12)

4.6.2 Derivatives of G(r)

Gk(r(p,q)) =
1

4π

eikr(p,q)

r(p,q)

∂Gk(r(p,q))

∂r
=
Gk(r(p,q))

r(p,q)
(ikr(p,q)− 1)

∂2Gk(r(p,q))

∂r2
=
Gk(r(p,q))

r(p,q)2
(2− 2ikr(p,q)− k2r(p,q)2)
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4.6.3 Normal derivatives of the Greens function

These normal derivatives appear in the boundary integral formulations and consist of
components from the previous two subsections.

∂Gk(r(p,q))

∂nq
=
∂Gk(r(p,q))

∂r

∂r(p,q)

∂nq

∂Gk(r(p,q))

∂np
=
∂Gk(r(p,q))

∂r

∂r(p,q)

∂np

∂2Gk(r(p,q))

∂np∂nq
=
∂Gk(r(p,q))

∂r

∂2r(p,q)

∂np∂nq
+
∂2Gk(r(p,q))

∂r2

∂r(p,q)

∂np

∂r(p,q)

∂nq

4.6.4 G as a solution to the Helmholtz equation

We will briefly show ∇2G(p,q) = −k2G(p,q) for p 6= q. In the following rx, ry and rz
are the cartesian components of the vector r(p,q) = p− q.

∂Gk(p,q)

∂x
=
∂Gk(r(p,q))

∂r

∂r(p,q)

∂x

∂2Gk(p,q)

∂x2
=
∂2Gk(r(p,q))

∂r2

(
∂r(p,q)

∂x

)2

+
∂Gk(r(p,q))

∂r

(
∂2r(p,q)

∂x2

)
∂2r(p,q)

∂x2
=

r2
y + r2

z

r(p,q)3

The above is valid, regardless of whether p or q are the variable of differentiation.
Therefore:

∇2Gk(p,q) =
∂2Gk(r(p,q))

∂r2
(∇r(p,q) · ∇r(p,q)) +

∂Gk(r(p,q))

∂r
∇2r(p,q)

=
1

4π

eikr(p,q)

r(p,q)3
(2− 2ikr(p,q)− k2r(p,q)2)

r2
x + r2

y + r2
z

r(p,q)2

+
1

4π

eikr(p,q)

r(p,q)2
(ikr(p,q)− 1)

2r2
x + 2r2

y + 2r2
z

r(p,q)3

=
1

4π

eikr(p,q)

r(p,q)5
(−k2r(p,q)2)(r2

x + r2
y + r2

z)

=− k2 1

4π

eikr(p,q)

r(p,q)

=− k2Gk(p,q)

What we wanted to show.
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4.6.5 Verifying the radiation condition assumption

For (4.5) we assumed, that the Sommerfeld radiation condition (4.4) applies to the
Greens function G. We verify that the outgoing wave Green’s function Gk(p,q) =
1

4π
eikr(p,q)

r(p,q) actually satisfies the condition. For the following let r = r(p,q).

lim
r→∞

r

(
−∂G(r)

∂nq
− ikG(r)

)
= lim

r→∞
r

−∂G(r)

∂r

∂r

∂nq︸︷︷︸
=−1

−ikG(r)


= lim

r→∞
r

(
eikr

4πr2
(ikr − 1)− ik e

ikr

4πr

)
= lim

r→∞

(
ik
eikr

4π
− eikr

4πr
− ik e

ikr

4π

)
= lim

r→∞
−e

ikr

4πr
= 0

The above result confirms, that an integral of type (4.5) with G = 1
4π

eikr(p,q)

r(p,q) over
∂Usphere can be omitted for the remainder of the text.
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5 Boundary integral formulation of the
Helmholtz equation

In this chapter we derive the boundary integral equation formulation for the Helmholtz
equation. We’ll get to the ∂U -integral by applying Green’s second identity in a non-
rigorous way and then partially evaluating the boundary integral. Like in the Laplace
case, we could also treat the singular behaviour of G, but the following scheme will
serve us well for examining additional acoustic sources and aspects of the numerical
implementation later on.

In the following it is assumed, that the boundary ∂U is piecewise smooth. The obser-
vation point p is assumed to be in the interior Uo of the domain U . Again, the vector
nq is the unit normal to the boundary at q ∈ ∂U , directed into U .

It holds that:∫
U

G(p,q) (∇2 + k2)φ(q)︸ ︷︷ ︸
=0

−(∇2 + k2)G(p,q)φ(q) dq =

∫
U

G(p,q)∇2φ(q) dq

−
∫
U

∇2G(p,q)φ(q) dq

By applying Green’s second identity nonrigorously to the right hand side, it follows:

−
∫
U

(∇2 + k2)G(p,q)φ(q) dq '
∫
∂U

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq

∫
U

δ(p− q)φ(q) dq '
∫
∂U

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq

By virtue of the sampling property of the δ-distribution, the boundary integral equation
for the observation point p in the interior Uo of the domain U follows.

φ(p) '
∫
∂U

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq

Since Green’s second identity is only valid for two continuously differentiable functions,
it is not directly applicable to φ(q) and G(p,q) on U , because G(p,q) and ∂G(p,q)

∂nq
are

singular at ||p − q||2 = 0 with a first and second order pole respectively. Therefore we
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modify the domain and boundary at p by cutting out a ball Bp
ε around p with radius ε.

Green’s second identity is valid for the modified domain Uε as the singularity is avoided.
The approach is then to take the radius ε to zero and evaluate the integral of ∂Uε in
two parts. First the part that bounds the intersection of Bp

ε and U and then the rest of
∂Uε. This strategy is derived from [CL07, page 13].

The definition of the ball:

Bp
ε := {q ∈ U | ‖ q− p ‖< ε }

The modified domain is now:

Uε = U \Bp
ε = U \{q ∈ U | ‖ q− p ‖< ε }

Assumed that φ ∈ C2 on U , φ(q) and G(p,q) satisfy Greens second theorem on the
modified Boundary ∂Uε for q ∈ ∂Uε and p ∈ U\Uε. It follows therefore:∫
∂Uε

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq =

∫
Uε

(G(p,q)∇2φ(q)−∇2G(p,q)φ(q)) dq

=

∫
Uε

G(p,q) (∇2 + k2)φ(q)︸ ︷︷ ︸
=0

dq

−
∫
Uε

(∇2 + k2)G(p,q)︸ ︷︷ ︸
=0

φ(q) dq

= 0
(5.1)

In the following subsections the two terms of the left-hand side of (5.1) will be examined
separately for p ∈ Uo and p ∈ ∂U .

5.1 Observation point inside the domain

First we consider the case of the observation point in the interior of the domain. For
lim ε→ 0 ∂Bp

ε doesn’t intersect ∂U . Therefore ∂Uε can be decomposed as follows:

∂Uε = ∂U ∪ ∂Bp
ε with ∂Bp

ε := {q ∈ U | ‖ q− p ‖= ε }

We now evaluate the terms of left-hand side of (5.1) for ∂U and ∂Bp
ε separately. The

boundary of the sphere ∂Bp
ε will be represented through spherical coordinates. Let η,

ξ and τ be pairwise orthogonal unit vectors at p. Note that the vectors form a local
orthonomal base at p, see figure 5.1. This coordinate transform strategy is a slight
variaton of [MZHT10, page 197].
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θ

ϕ
p

q
nq

η

ξ

τ

∂Bp
ε

r(p,q)

Figure 5.1: The ball Bp
ε

A point q ∈ ∂Bp
ε in the spherical coordinates of the orthonormal base of Bp

ε :

q = ε(sin(θ) cos(ϕ)η + sin(θ) sin(ϕ)ξ + cos(θ)τ )

Note that the Jacobian determinant of the transformation from the original cartesian
coordinates to the spherical coordinates of the local orthonormal base is ε2 sin(θ).
The separate terms of equation (5.1):

H1 :=

∫
∂Bp

ε

∂G(p,q)

∂nq
φ(q) dq

H2 := −
∫
∂Bp

ε

G(p,q)
∂φ(q)

∂nq
dq

I1 :=

∫
∂U

∂G(p,q)

∂nq
φ(q) dq

I2 := −
∫
∂U

G(p,q)
∂φ(q)

∂nq
dq
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H1 =

∫
∂Bp

ε

∂G(p,q)

∂nq
φ(q) dq

=

2π∫
0

π∫
0

∂G(r(p,q))

∂r

∂r(p,q)

∂nq︸ ︷︷ ︸
=1

φ(q)

 ε2 sin(θ) dθ dϕ

=

2π∫
0

π∫
0

(
eikε

4πε2
(ikε− 1)φ(q)

)
ε2 sin(θ) dθ dϕ

=− eikε

4π
(1− ikε)

2π∫
0

π∫
0

(φ(q)− φ(p)) sin(θ) dθ dϕ

− eikε

4π
(1− ikε)

2π∫
0

π∫
0

φ(p) sin(θ) dθ dϕ

=− eikε

4π
(1− ikε)

2π∫
0

π∫
0

(φ(q)− φ(p)) sin(θ) dθ dϕ

−

e
ikε

2
(1− ikε)

π∫
0

sin(θ) dθ

︸ ︷︷ ︸
=2

φ(p)

Under the ϕ ∈ C2 on U assumption, φ(q) satisfies the Lipschitz continuity condition
‖ φ(q)− φ(p) ‖≤ C ‖ q− p ‖≤ Cε on the compact Bp

ε for a non-negative constant C.
It follows :

lim
ε→0

H1 = −φ(p)
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H2 =−
∫
∂Bp

ε

G(p,q)
∂φ(q)

∂nq
dq

=−
2π∫
0

π∫
0

(
eikε

4πε
∇φ(q) · nq

)
ε2 sin(θ) dθ dϕ

=− ε eikε

4π

2π∫
0

π∫
0

(∇φ(q) · nq) sin(θ) dθ dϕ

=− ε eikε

4π

2π∫
0

π∫
0

(∇φ(q)−∇φ(p)) · nq sin(θ) dθ dϕ

− ε eikε

4π

2π∫
0

π∫
0

∇φ(p) · nq sin(θ) dθ dϕ

Under the ϕ ∈ C2 on U assumption, φ(q) also satisfies the Lipschitz continuity condi-
tion ‖ ∇φ(q)−∇φ(p) ‖max≤ C ‖ q− p ‖≤ Cε on the compact Bp

ε for a non-negative
constant C. Therefore:

lim
ε→0

H2 = 0

(5.1) expressed in terms of H1, H2, I1 and I2 is:∫
∂Uε

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq = H1 +H2 + I1 + I2 = 0

The above equation rearranged and evaluated for lim ε→0:

−H1 = I1 + I2

We arrive at the boundary integral formulation for the observation point p in the interior
of U .

φ(p) =

∫
∂U

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq (5.2)

5.2 Observation point on the boundary

Now we consider the case of the observation point p on the boundary of the domain
U and ∂U being smooth in a neighbourhood of p. For lim ε→ 0 ∂Bp

ε intersects ∂U .
Therefore removing Bp

ε from U cuts out a circular piece of ∂U . The intersection of U
and ∂Bp

ε is a hemisphere Uhem of radius ε. The boundary of the modified domain Uε
can be decomposed into the hemisphere surface ∂Uhem and the perforated ∂U , denoted
∂Uperf .
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∂Uε := ∂Uperf ∪̇ ∂Uhem

∂Uhem = {q ∈ U | ‖ q− p ‖= ε}

∂Uperf = ∂U \{q ∈ U | ‖ q− p ‖≤ ε }

Again the two terms of the left-hand side of (5.1) will be examined separately for ∂Uhem
and ∂Uperf . The hemisphere Uhem will be represented through spherical coordinates.

θ

ϕ

p

q

nq

η
ξ

np

∂Uhem

∂Uperf

r(p,q)

Figure 5.2: The hemisphere at p

We define a local orthonormal base similar to figure 5.1 at p with the additional
requirement that τ = np.

A point q ∈ ∂Uhem in the sperical coordinates of the local orthonormal base:

q = ε(sin(θ) cos(ϕ)η + sin(θ) sin(ϕ)ξ + cos(θ)np) (5.3)

The separate terms of equation (5.1):

H1 :=

∫
∂Uhem

∂G(p,q)

∂nq
φ(q) dq

H2 := −
∫

∂Uhem

G(p,q)
∂φ(q)

∂nq
dq

I1 :=

∫
∂Uperf

∂G(p,q)

∂nq
φ(q) dq
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I2 := −
∫

∂Uperf

G(p,q)
∂φ(q)

∂nq
dq

H1 =

∫
∂Uhem

∂G(p,q)

∂nq
φ(q) dq

=

2π∫
0

π
2∫

0

∂G(r(p,q))

∂r

∂r(p,q)

∂nq︸ ︷︷ ︸
=1

φ(q)

 ε2 sin(θ) dθ dϕ

=

2π∫
0

π
2∫

0

(
eikε

4πε2
(ikε− 1)φ(q)

)
ε2 sin(θ) dθ dϕ

=− eikε

4π
(1− ikε)

2π∫
0

π
2∫

0

(φ(q)− φ(p)) sin(θ) dθ dϕ

− eikε

4π
(1− ikε)

2π∫
0

π
2∫

0

φ(p) sin(θ) dθ dϕ

=− eikε

4π
(1− ikε)

2π∫
0

π
2∫

0

(φ(q)− φ(p)) sin(θ) dθ dϕ

−

e
ikε

2
(1− ikε)

π
2∫

0

sin(θ) dθ

︸ ︷︷ ︸
=1

φ(p)

As above, φ(q) satisfies the Lipschitz continuity condition
‖ φ(q)− φ(p) ‖≤ C ‖ q− p ‖≤ Cε on the compact Bp

ε ∩ U for a non-negative constant
C. It follows:

lim
ε→0

H1 = −1

2
φ(p)
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H2 =−
∫

∂Uhem

G(p,q)
∂φ(q)

∂nq
dq

=−
2π∫
0

π
2∫

0

(
eikε

4πε

∂φ(q)

∂nq

)
ε2 sin(θ) dθ dϕ

=− ε eikε

4π

2π∫
0

π
2∫

0

(
∂φ(q)

∂nq

)
sin(θ) dθ dϕ

=− ε eikε

4π

2π∫
0

π
2∫

0

(∇φ(q)−∇φ(p)) · nq sin(θ) dθ dϕ

− ε eikε

4π

2π∫
0

π
2∫

0

∇φ(p) · nq sin(θ) dθ dϕ

Again we assert φ(q) satisfies the Lipschitz continuity condition
‖ ∇φ(q)−∇φ(p) ‖max≤ C ‖ q− p ‖≤ Cε on the compact Bp

ε ∩ U for a non-negative
constant C. Therefore:

lim
ε→0

H2 = 0

Analogously to the previous section, (5.1) is expressed in terms of H1, H2, I1 and I2:∫
∂Uε

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq = H1 +H2 + I1 + I2 = 0

The above equation rearranged and evaluated for lim ε→0:

−H1 = I1 + I2

We arrive at the boundary integral formulation for the observation point p on the bound-
ary ∂U .

1

2
φ(p) =

∫
∂Uperf=∂U\{p}

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq (5.4)

The expression ∂U\{p} is shorthand for lim ε→0∂U\Bp
ε .

In the case of the observation point p on the boundary and between smooth boundary
pieces and lim ε→0 the integrals I1 and I2 stay the same, but the integration limits of
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H1 and H2 change. Nevertheless H2 = 0. H1 takes the following form:

H1 =

∫
S:=U∩∂Bp

ε

∂G(p,q)

∂nq
φ(q) dq

=

∫∫
S

∂G(r(p,q))

∂r

∂r(p,q)

∂nq︸ ︷︷ ︸
=1

φ(q)

 ε2 sin(θ) dθ dϕ

=

∫∫
S

(
eikε

4πε2
(ikε− 1)φ(q)

)
ε2 sin(θ) dθ dϕ

=− eikε

4π
(1− ikε)

∫∫
S

(φ(q)− φ(p)) sin(θ) dθ dϕ

− eikε

4π
(1− ikε)

∫∫
S

φ(p) sin(θ) dθ dϕ

=− eikε

4π
(1− ikε)

∫∫
S

(φ(q)− φ(p)) sin(θ) dθ dϕ

−


eikε

4π
(1− ikε)

∫∫
S

sin(θ) dθ dϕ

︸ ︷︷ ︸
Ω(p)

φ(p)

=⇒ lim
ε→0

H1 =− Ω(p)

4π
φ(p)

Here Ω(p) denotes the solid angle of the intersection of Bp
ε and U . We arrive at the

boundary integral formulation for the observation point p on the boundary ∂U and
between smooth boundary pieces (on the edge between).

Ω(p)

4π
φ(p) =

∫
∂Uperf=∂U\{p}

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq (5.5)

5.3 Field modification

So far we have only considered an acoustic field defined by its boundary and boundary
condition alone. In this section we extend the boundary equation to model an existing
sound field, which is modified by the boundary. At first we address the problem of an
acoustic field φ generated in a domain Uε due to a point source G(q, s) at the interior
position s ∈ Uo

ε .
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The unmodified point source field is described via the free-field Greens function.

G(q, s) =
1

4π

eik‖q−s‖

‖ q− s ‖
=

1

4π

eikr

r

r =‖ r ‖=‖ q− s ‖

It is assumed that near s the modified field is similar to the free-field, which means that
the difference φdiff (q) := φ(q) − G(q, s) between the modified field and the free-field
solution and also its gradient ∇φdiff (q) are continuous in a neighbourhood of s [CL07,
page 13].

This implies φ being singular at s and prevents us again from applying Greens second
theorem directly to φ(q) and G(p,q) on Uε. Similar to above we modify Uε by defining
a ball Bs

ε of radius ε→0 around the source location s and removing it from the domain.

Bs
ε := {q ∈ U | ‖ q− s ‖< ε }

The modified domain is now:

Us = Uε \Bs
ε = Uε \{q ∈ U | ‖ q− s ‖< ε }

The boundary of Us writes as:
∂Us = ∂Uε ∪̇ ∂Bs

ε

As Greens second identity applies to ∂Us:∫
∂Us

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq =

∫
Us

(G(p,q)∇2φ(q)−∇2G(p,q)φ(q)) dq

=

∫
Us

G(p,q) (∇2 + k2)φ(q)︸ ︷︷ ︸
=0

dq

−
∫
Us

(∇2 + k2)G(p,q)︸ ︷︷ ︸
=0

φ(q) dq

= 0
(5.6)

The surface integrals over ∂Bs
ε will also be evaluated separately. We employ a similar

coordinate transform for ∂Bs
ε as for ∂Bp

ε , see figure 5.1 for reference.

S1 :=

∫
∂Bs

ε

∂G(p,q)

∂nq
φ(q) dq

S2 := −
∫
∂Bs

ε

G(p,q)
∂φ(q)

∂nq
dq
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|S1| =

∣∣∣∣∣∣∣
∫
∂Bs

ε

∂G(p,q)

∂nq
φ(q) dq

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
2π∫
0

π∫
0

(
∂G(r(p,q))

∂r

∂r(p,q)

∂nq
φ(q)

)
ε2 sin(θ) dθ dϕ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2π∫
0

π∫
0

(
eikr(p,q)

4πr(p,q)2
(ikr(p,q)− 1)φ(q)

)
ε2 sin(θ) dθ dϕ

∣∣∣∣∣∣
≤ε2

∣∣∣∣∣∣
 2π∫

0

π∫
0

eikr(p,q)

4πr(p,q)2
(ikr(p,q)− 1)(φ(q)−G(q, s)) sin(θ) dθ dϕ

∣∣∣∣∣∣
+ ε2

∣∣∣∣∣∣
 2π∫

0

π∫
0

eikr(p,q)

4πr(p,q)2
(ikr(p,q)− 1)G(q, s) sin(θ) dθ dϕ

∣∣∣∣∣∣
=ε2

∣∣∣∣∣∣
 2π∫

0

π∫
0

eikr(p,q)

4πr(p,q)2
(ikr(p,q)− 1)φdiff (q) sin(θ) dθ dϕ

∣∣∣∣∣∣
+ ε2

∣∣∣∣∣∣
 2π∫

0

π∫
0

eikr(p,q)

4πr(p,q)2
(ikr(p,q)− 1)

eikε

4πε
sin(θ) dθ dϕ

∣∣∣∣∣∣
≤ε2

∣∣∣∣∣∣
 2π∫

0

π∫
0

eikr(p,q)

4πr(p,q)2
(ikr(p,q)− 1)φdiff (q) sin(θ) dθ dϕ

∣∣∣∣∣∣
+ ε

∣∣∣∣ eikε16π2

∣∣∣∣
∣∣∣∣∣∣
 2π∫

0

π∫
0

eikr(p,q)

r(p,q)2
(ikr(p,q)− 1) sin(θ) dθ dϕ

∣∣∣∣∣∣
φdiff is continuous and attains its maximum and minimum on Bs

ε for small ε. Also
limε→0 r(p,q) =‖ p− s ‖ for all q ∈ ∂Bs

ε . It follows:

lim
ε→0

S1 = 0
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S2 =−
∫
∂Bs

ε

G(p,q)
∂φ(q)

∂nq
dq

=−
2π∫
0

π∫
0

(
eikr(p,q)

4πr(p,q)
∇φ(q) · nq

)
ε2 sin(θ) dθ dϕ

=−
2π∫
0

π∫
0

(
eikr(p,q)

4πr(p,q)
∇(φ(q)−G(q, s)) · nq

)
ε2 sin(θ) dθ dϕ

−
2π∫
0

π∫
0

 eikr(p,q)

4πr(p,q)

∂G(r(q, s))

∂r

∂r(q, s)

∂nq︸ ︷︷ ︸
=1

 ε2 sin(θ) dθ dϕ

=−
2π∫
0

π∫
0

(
eikr(p,q)

4πr(p,q)
∇φdiff (q) · nq

)
ε2 sin(θ) dθ dϕ

−
2π∫
0

π∫
0

(
eikr(p,q)

4πr(p,q)

eikε

4πε2
(ikε− 1)

)
ε2 sin(θ) dθ dϕ

Under the continuity assumption for ∇φdiff it follows for the first term of S2:

lim
ε→0

S21 = 0

And for the second term of S2:

lim
ε→0

S22 = lim
ε→0
−

2π∫
0

π∫
0

(
eikr(p,q)

4πr(p,q)

eikε

4πε2
(ikε− 1)

)
ε2 sin(θ) dθ dϕ

=
1

4π

2π∫
0

π∫
0

(
eikr(p,s)

4πr(p, s)

)
sin(θ) dθ dϕ

=
1

4π

eikr(p,s)

4πr(p, s)

2π∫
0

π∫
0

sin(θ) dθ dϕ

=
eikr(p,s)

4πr(p, s)

=G(p, s)

(5.6) expressed in terms of H1, H2, I1, I2, S1 and S2 is:∫
∂Us

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq = H1 +H2 + I1 + I2 + S1 + S2 = 0
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The above equation rearranged and evaluated for lim ε→0:

−H1 = I1 + I2 + S2 = I1 + I2 +G(p, s) (5.7)

Expression (5.7) implies that an incident point source field, which gets modified (re-
flected, difffracted and absorbed) by boundaries, just adds a source term as observed
at the obervation point p in the free field case to the boundary equation. In the case
of multiple point sources, the source term is the sum of the sources as observed at p.
By the virtue of Huygens principle a complex sound field can be modeled by a suitable
amount of point sources. Therefore the source term in (5.7) can be generalized to the
case of any incident field in the domain, that would exist if there were no boundaries.
This result is in agreement with [Juh94, page 22]. In the ensuing chapters the incident
source term oberved at p will be labeled φin(p).

5.4 Boundary equations with incident field

The integral equations thus far with an additional source term:
The boundary integral equation for the observation point p in the interior Uo of the
domain U .

φ(p) = φin(p) +

∫
∂U

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq (5.8)

The boundary integral equation for the observation point p on the boundary ∂U of the
domain U , where the boundary is smooth in a neighbourhood of p.

1

2
φ(p) = φin(p) +

∫
∂U

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq (5.9)

The boundary integral equation for the observation point p on the boundary ∂U of the
domain U , where p lies between smooth boundary pieces.

Ω(p)

4π
φ(p) = φin(p) +

∫
∂U

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq (5.10)

Note that for equations with p ∈ ∂U , we define ∂U :=lim ε→0 ∂U\Bp
ε .
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6 Numerical solution of the boundary
equations

So far we have transformed our partial differential equation into a boundary integral.
The boundary integral equation is generally not easier to solve analytically than the
partial differential equation. Only for very simple boundary geometries is an analytical
solution viable. This chapter deals with the necessary reduction of the boundary equation
to a system of linear equations. A rather straightforward approach is introduced, the
collocation method, which demands that the integral equation be satisfied for a discrete
set of points on the boundary. We will pursue a technique whereby the boundary is
decomposed into/approximated by n non-intersecting triangular panels. We’ll enforce
that the integral equation be satisfied at the centroids of the triangles, the collocation
points. Another approximation will be conducted on the boundary solutions, the sound
pressure φ and the surface particle velocity ∂φ

∂n , by assuming them as constant over an
element. These approximations of the boundary shape and the boundary values will
introduce an error, which will generally tend to zero as the element size goes to zero also
[Juh94, page 40].

From now on the surface particle velocity ∂φ
∂n will also be denoted υ.

6.1 Approximation of the boundary

Figure 6.1: Rough approximation of a
sphere with 36 triangles
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As outlined above, the following text deals with a numerical integration method, with
triangles as boundary representation. ∂U shall denote our original boundary and 4Ui
(for i = 1, 2, ... n) shall be the approximating triangular panels.

∂U ≈ ∂Ũ =
⋃̇

i=1...n

4Ui

As the collocation points desribed above are situated on the boundary on the interior of a
planar element, (5.9) is the appropriate equation to identify the solution at a collocation
point with the boundary integral. Let pi be the collocation point on 4Ui. Applying
(5.9) to the triangular boundary leads to:

1

2
φ(pi) =φin(pi) +

∫
∂Ũ

(
∂G(pi,q)

∂nq
φ(q)−G(pi,q)υ(q)

)
dq

=φin(pi) +

n∑
j=1

∫
4Uj

(
∂G(pi,q)

∂nq
φ(q)−G(pi,q)υ(q)

)
dq

(6.1)

6.2 The system of linear equations

Assuming constant behaviour of the boundary state functions φ and υ for a triangle 4Ul
suggests indexing the state functions the same as their triangular domain.

φl = φ(q) ∀q ∈ 4Ul

υl = υ(q) ∀q ∈ 4Ul

1

2
φ(pi) =φin(pi) +

n∑
j=1

∫
4Uj

(
∂G(pi,q)

∂nq
φj −G(pi,q)υj

)
dq

=φin(pi) +
n∑
j=1

∫
4Uj

∂G(pi,q)

∂nq
dq φj −

n∑
j=1

∫
4Uj

G(pi,q) dq υj
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Above equation can be rearranged to:

n∑
j=1

∫
4Uj

G(pi,q) dq υj = φin(pi) +
n∑
j=1

 ∫
4Uj

∂G(pi,q)

∂nq
dq − δij

1

2

φj , (6.2)

where δij is the Kronecker delta. Ordering the respective equations for the n collocation
points leads directly to the following system of linear equations.

∫
4U1

G(p1,q) dq . . .
∫
4Un

G(p1,q) dq

...
. . .

...∫
4U1

G(pn,q) dq . . .
∫
4Un

G(pn,q) dq


υ1

...
υn



=

φ
in(p1)

...
φin(pn)

+



∫
4U1

∂G(p1,q)
∂nq

dq . . .
∫
4Un

∂G(p1,q)
∂nq

dq

...
. . .

...∫
4U1

∂G(pn,q)
∂nq

dq . . .
∫
4Un

∂G(pn,q)
∂nq

dq

− 1

2
I


φ1

...
φn


I is the n× n identity matrix.
Due to the boundary conditions, we can substitute φi into υi or vice versa.

aiφi + biυi = fi for i = 1, . . . , n

Therefore we can transform the above general linear system into a Ab = c standard
form, with A ∈ Cn×n and b, c ∈ Cn.

6.3 Solving the discrete integrals

For each of the collocation points, we have to solve the integrals of ∂G(p,q)
∂nq

and G(p,q)
over each triangular panel. When p does not lie on the triangle, the integrand is contin-
uously differentiable, hence we can evaluate the integral directly via a Gauss quadrature
rule [Kir98, page 40]. When p lies on the panel, the Gauss quadrature converges only
very slowly, due to the singularity at p = q. In this section we show the derivation of
a nonsingular analytical reformulation of the following singular integrals after a manner
outlined in [MZHT10, page 198]:

I1 := lim
ε→0

∫
4Up\Bp

ε

∂G(p,q)

∂nq
dq

I2 := lim
ε→0

∫
4Up\Bp

ε

G(p,q) dq
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Note that the normal n to a planar triangle is constant and perpendicular to r = p−q.
Therefore ∂r(p,q)

∂nq
= −r·nq

‖r‖ = 0. It follows

I1 = lim
ε→0

∫
4Up\Bp

ε

∂G(r(p,q))

∂r

∂r(p,q)

∂nq︸ ︷︷ ︸
=0

dq

=0

I2 is evaluated via a transformation to cylindrical coordinates.

η

ξ

pε

R(θ)θ

4Up\Bp
ε

Figure 6.2: The triangle 4Up\Bp
ε

The unit vectors η, ξ and np form a local orthogonal base like in figure 5.2. η and
ξ are tangential to the triangle. A point q ∈ 4Up in the cylindrical coordinates of the
orthonormal base of Bp

ε :

q = r(p,q) cos(θ)η + r(p,q) sin(θ)ξ + 0np (6.3)

A point q on the edge of 4Up in the cylindrical coordinates of the orthonormal base of
Bp
ε :

q = R(θ) cos(θ)η +R(θ) sin(θ)ξ (6.4)

Note that the Jacobian determinant of the transformation from the original cartesian
coordinates to the cylindrical coordinates is r = r(p,q).
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I2 = lim
ε→0

∫
4Up\Bp

ε

G(p,q) dq

= lim
ε→0

2π∫
0

R(θ)∫
ε

G(r) r dr dθ

= lim
ε→0

2π∫
0

R(θ)∫
ε

eikr

4πr
r dr dθ

=

2π∫
0

− i

4πk

[
eikr
]R(θ)

0
dθ

=

2π∫
0

i

4πk

(
1− eikR(θ)

)
dθ

=
i

2k
+

i

4πk

2π∫
0

eikR(θ) dθ

The remaining integral term is nonsingular and can be directly evaluated with a standard
gaussian quadrature rule.

p

R(θ)
θ

4Up

α

a

4U1
p

4U2
p

4U3
p

b

c

β

γ

Figure 6.3: R(θ) on the triangle 4Up
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Due to the law of sines, R(θ) can be exemplarily evaluated on 4U1
p the following way:

R(θ) = a
sin(α)

sin(π − α− θ)
= a

sin(α)

sin(α+ θ)

Finally the boundary equation (6.2) with only nonsingular integrals: i

2k
+

i

4πk

2π∫
0

eikR(θ) dθ

 υi +
n∑
j=1
j 6=i

∫
4Uj

G(pi,q) dq υj =φin(pi)−
1

2
φi

+
n∑
j=1
j 6=i

 ∫
4Uj

∂G(pi,q)

∂nq
dq

φj

(6.5)

6.4 Numerical and inherent shortcomings

In this section we will list some shortcomings of the boundary element method resulting
from (5.9). In the interior case with Dirichlet boundary conditions equation (5.9) turns
into a Fredholm integral equation of the first kind, which are generally difficult to solve.
The matrices that arise in their equivalent linear systems are ill-conditioned [Kir98, page
57].

The general boundary element method for the exterior Helmholtz problem suffers from
the so-called non-uniqueness problem. Regardless of the imposed boundary conditions,
be it Dirichlet, Neumann or impedance, the Helmholtz integral equation (5.9) does not
yield a unique solution at the eigenfrequencies of the corresponding interior Dirichlet
problem [MW08, page 412]. Though physically unconnected, a resonance in the interior
problem pollutes the solution of the exterior problem. These characteristic frequencies
of the interior Dirichlet are therefore also termed fictitious eigenfrequencies. The non-
uniqueness problem is not due to a specific numerical implementation, but inherent to
the integral formulation. The interior problem itself is not affected by this issue as the
eigenfrequencies of the interior problem are the ’real’ eigenfrequencies of the interior
domain [Juh94, page 106]. It is generally not a feasible strategy to try to avoid these
contaminating wavenumbers, as they become closer spaced at higher frequencies and
also render the matrix of the coresponding linear system ill-conditioned for neighbouring
wavenumbers [Kir98, page 57]. The approach to solve the interior Dirichlet problem first,
to vet a specific wavenumber is further problematic, because of the Fredholm first kind
equation difficulty mentioned above. Therefore improved boundary integral equation
formulation were explored by the researchers in the field. The most popular approaches
are the CHIEF and the Burton-Miller method. The CHIEF method is just mentioned
here for completeness. This text focuses on the Burton-Miller method in the following.
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7 The Burton-Miller formulation

In their 1971 article [BM71], Burton and Miller derive a second boundary integral equa-
tion for the observation point on the boundary, by differentiating (5.9) with regard to
the normal np to the boundary at p. Note that (5.9) is a function of p. Therefore the
directional derivative of the boundary equation is the following:

1

2
υ(p) =

1

2

∂φ(p)

∂np
=
∂φin(p)

∂np
+

∫
∂U

(
∂2G(p,q)

∂nq∂np
φ(q)− ∂G(p,q)

∂np
υ(q)

)
dq (7.1)

The further approach is to combine (5.9) and (7.1) as a linear combination. The Burton-
Miller combined boundary equation [CCH09, page 165]:

1

2
φ(p) + α

1

2
υ(p) =φin(p) + α

∂φin(p)

∂np

+

∫
∂U

(
∂G(p,q)

∂nq
φ(q)−G(p,q)

∂φ(q)

∂nq

)
dq

+ α

∫
∂U

(
∂2G(p,q)

∂nq∂np
φ(q)− ∂G(p,q)

∂np
υ(q)

)
dq

(7.2)

with coupling parameter α ∈ C.
Most of the encountered literature gives α = i

k as an optimal choice for e−iωt-time
dependence in (4.2) (our case) and α = − i

k for eiωt-time dependence. See [ZCGD15,
page 50] for reference. We will return to the problem of the optimal coupling parameter
in the conclusion section.

7.1 Solving the singular integrals

We employ the same collocation scheme for the Burton-Miller combined boundary equa-
tion (7.2) as for our original boundary equation (5.9). The normal derivatives of G(p,q)
in equation (7.1) have already been given in section (4.6.3). Those derivatives are also
singular on 4Up and, similar to the situation in section (6.3), not eligible for Gaussian
quadrature. In this chapter we reproduce the derivation of nonsingular reformulations
of the (4Up\{p})-integrals for planar triangles with constant φ and υ, originally from
[MZHT10, page 198].

I1 :=

∫
4Up\Bp

ε

∂2G(p,q)

∂nq∂np
φ(q) dq
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I2 := −
∫

4Up\Bp
ε

∂G(p,q)

∂np
υ(q) dq

It holds:

∂2G(p,q)

∂nq∂np
=
∂2G(r(p,q))

∂r2
∂r(p,q)

∂np

∂r(p,q)

∂nq
+
∂G(r(p,q))

∂r

∂2r(p,q)

∂np∂nq

=
eikr(p,q)

4πr(p,q)3

(
(3− 3ikr(p,q)− k2r(p,q)2)

∂r(p,q)

∂np

∂r(p,q)

∂nq
+ (1− ikr(p,q))np · nq

)
(7.3)

The vectors r(p,q) and nq = np are orthogonal on 4Up. It follows:

∂r(p,q)

∂nq
=
∂r(p,q)

∂np
= 0 (7.4)

(7.4) reduces ∂2G(p,q)
∂nq∂np

to:

∂2G(p,q)

∂nq∂np
=

eikr(p,q)

4πr(p,q)3
(1− ikr(p,q))

I1 is evaluated now via the same transform to cylindrical coordinates as described by
figure 6.2, (6.3) and (6.4). Note that the assumption of constant behaviour for φ on the
triangle is used in the following.

I1 =

∫
4Up\Bp

ε

∂2G(p,q)

∂nq∂np
φ(q) dq

=

 2π∫
0

R(θ)∫
ε

eikr

4πr3
(1− ikr) r dr dθ

φ(p)

=

 2π∫
0

[
−e

ikr

4πr

]R(θ)

ε

dθ

φ(p)

=

 2π∫
0

(
eikε

4πε
− eikR(θ)

4πR(θ)

)
dθ

φ(p)

=

eikε
2ε
−

2π∫
0

eikR(θ)

4πR(θ)
dθ

φ(p)

Under abuse of notation we can therefore write:
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lim
ε→0

I1 =

 1

2ε
−

2π∫
0

eikR(θ)

4πR(θ)
dθ

φ(p)

Note that I1 includes a divergent term, proportional to 1
ε .

I2 =−
∫

4Up\Bp
ε

∂G(p,q)

∂np
υ(q) dq

=−
∫

4Up\Bp
ε

∂G(r(p,q))

∂r

∂r(p,q)

∂np︸ ︷︷ ︸
=0

υ(q) dq

=0

Because I1 includes an ε-dependent term, we have to revaluate the hemisphere surface
integrals.

∂Uhem = ∂(Bp
ε ∩ Ũ)

H1 := −
∫

∂Uhem

∂2G(p,q)

∂nq∂np
φ(q) dq

H2 :=

∫
∂Uhem

∂G(p,q)

∂np
υ(q) dq

The signs of the integrals above are changed with regard to the corresponding integrals of
section (5.2), because in the derivation of equation (7.1) the integrals have been moved
to the other side of the equality sign. Note that the hemisphere surface is identical
to the definition illustrated by figure 5.2. Again we transform the hemisphere surface
to spherical coordinates. A point q ∈ ∂Uhem in the spherical coordinates of the local
orthonormal base:

q = ε(sin(θ) cos(ϕ)η + sin(θ) sin(ϕ)ξ + cos(θ)np) (7.5)

The following properties hold on the hemisphere:

∂r(p,q)

∂nq
= −r(p,q) · nq

‖ r(p,q) ‖
= nq · nq = 1 (7.6)

∂r(p,q)

∂np
=

r(p,q) · np
‖ r(p,q) ‖

= −nq · np = − cos(θ) (7.7)

r(p,q) = ε (7.8)

Inserting (7.6), (7.7) and (7.8) into (7.3) lets us express ∂2G(p,q)
∂nq∂np

in the following way:

∂2G(p,q)

∂nq∂np
=

eikε

4πε3
(−2 + 2ikε+ k2ε2) cos(θ) (7.9)
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∇φ(p) in the coordinates of the orthonormal base of the hemisphere:

∇φ(p) =


∂φ(p)
∂η

∂φ(p)
∂ξ

∂φ(p)
∂np

 (7.10)

nq in the spherical coordinates of the orthonormal base of the hemisphere:

nq = sin(θ) cos(ϕ)η + sin(θ) sin(ϕ)ξ + cos(θ)np (7.11)

Still φ(q) satisfies the Lipschitz continuity condition
‖ ∇φ(q)−∇φ(p) ‖max≤ C ‖ q− p ‖≤ Cε on the compact Bp

ε ∩ U for a non-negative
constant C. It follows for φ(q), according to [Yas15, Lemma 1]:

‖ φ(q)− φ(p) +∇φ(p) · r(p,q) ‖≤ Cε2 (7.12)

Note that the direction of r(p,q) is the opposite with regard to the given reference.
Above considerations are used in the evaluation of H1:

H1 =−
∫

∂Uhem

∂2G(p,q)

∂nq∂np
φ(q) dq

=−
∫

∂Uhem

(
eikε

4πε3
(−2 + 2ikε+ k2ε2) cos(θ)

)
φ(q) dq

=−
2π∫
0

π
2∫

0

(
eikε

4πε3
(−2 + 2ikε+ k2ε2) cos(θ)

)
φ(q)ε2 sin(θ) dθ dϕ

=− eikε

4πε
(−2 + 2ikε+ k2ε2)

2π∫
0

π
2∫

0

(cos(θ) sin(θ)φ(q)) dθ dϕ

=− eikε

4πε
(−2 + 2ikε+ k2ε2)

2π∫
0

π
2∫

0

cos(θ) sin(θ)

φ(q)− φ(p) +∇φ(p) · r(p,q)︸ ︷︷ ︸
≤Cε2

 dθ dϕ

− eikε

4πε
(−2 + 2ikε+ k2ε2)

2π∫
0

π
2∫

0

cos(θ) sin(θ)φ(p) dθ dϕ

− eikε

4πε
(−2 + 2ikε+ k2ε2)

2π∫
0

π
2∫

0

cos(θ) sin(θ)

(
∂φ(p)

∂nq
ε

)
dθ dϕ
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Note that ∇φ(p) · r = −∂φ(p)
∂nq

ε. We will deal with the three terms of the right-hand side

separately. Due to (7.12) the first term H1 1 will tend to zero as lim ε→0.

H1 2 =− eikε

4πε
(−2 + 2ikε+ k2ε2)

 2π∫
0

π
2∫

0

cos(θ) sin(θ) dθ dϕ

 φ(p)

=
eikε

4ε
(2− 2ikε− k2ε2)φ(p)

=⇒ lim
ε→0

H1 2 =
1

2ε
φ(p)− ik

2
φ(p)

(7.13)

Under abuse of notation we can write again:

lim
ε→0

H1 2 =
1

2ε
φ(p)− ik

2
φ(p) (7.14)

Note that H1 2 includes an identical divergent term as I1. The two divergent terms cancel
each other out.

H1 3 =− eikε

4π
(−2 + 2ikε+ k2ε2)

 2π∫
0

π
2∫

0

cos(θ) sin(θ)∇φ(p) · nq dθ dϕ



(7.10) & (7.11)
=− eikε

4π
(−2 + 2ikε+ k2ε2)


2π∫
0

π
2∫

0

cos(θ) sin2(θ) cos(ϕ) dθ dϕ

︸ ︷︷ ︸
=0

 ∂φ(p)

∂η

− eikε

4π
(−2 + 2ikε+ k2ε2)


2π∫
0

π
2∫

0

cos(θ) sin2(θ) sin(ϕ) dθ dϕ

︸ ︷︷ ︸
=0

 ∂φ(p)

∂ξ

− eikε

4π
(−2 + 2ikε+ k2ε2)


2π∫
0

π
2∫

0

cos2(θ) sin(θ) dθ dϕ

︸ ︷︷ ︸
2π
3


∂φ(p)

∂np

=
eikε

3
(1− 1ikε− 1

2
k2ε2)

∂φ(p)

∂np

=⇒ lim
ε→0

H1 3 =
1

3

∂φ(p)

∂np
=

1

3
υ(p)
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H2 =

∫
∂Uhem

∂G(p,q)

∂np

∂φ(q)

∂nq
dq

=

2π∫
0

π
2∫

0

∂G(r(p,q))

∂r

∂r(p,q)

∂np

∂φ(q)

∂nq
ε2 sin(θ) dθ dϕ

=−
2π∫
0

π
2∫

0

eikε

4πε2
(ikε− 1) cos(θ)∇φ(q) · nq ε2 sin(θ) dθ dϕ

=−
2π∫
0

π
2∫

0

eikε

4π
(ikε− 1) cos(θ) (∇φ(q)−∇φ(p)) · nq︸ ︷︷ ︸

≤Cε

sin(θ) dθ dϕ

−
2π∫
0

π
2∫

0

eikε

4π
(ikε− 1) cos(θ)∇φ(p) · nq sin(θ) dθ dϕ

We will deal with the two terms on the right-hand side separately. The first term H2 1

will tend to zero as lim ε→0.
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H2 2 =−
2π∫
0

π
2∫

0

eikε

4π
(ikε− 1) cos(θ)∇φ(p) · nq sin(θ) dθ dϕ

(7.10) & (7.11)
=

eikε

4π
(1− ikε)


2π∫
0

π
2∫

0

cos(θ) sin2(θ) cos(ϕ) dθ dϕ

︸ ︷︷ ︸
=0

 ∂φ(p)

∂η

+
eikε

4π
(1− ikε)


2π∫
0

π
2∫

0

cos(θ) sin2(θ) sin(ϕ) dθ dϕ

︸ ︷︷ ︸
=0

 ∂φ(p)

∂ξ

+
eikε

4π
(1− ikε)


2π∫
0

π
2∫

0

cos2(θ) sin(θ) dθ dϕ

︸ ︷︷ ︸
2π
3


∂φ(p)

∂np

=
eikε

6
(1− ikε)∂φ(p)

∂np

=⇒ lim
ε→0

H2 2 =
1

6

∂φ(p)

∂np
=

1

6
υ(p)

To regain perspective:

H1 +H2 = I1 + I2 +
∂φin(p)

∂np
+

∫
∂Ũ\4Up

(
∂2G(p,q)

∂nq∂np
φ(q)− ∂G(p,q)

∂np
υ(q)

)
dq

7.2 The combined linear system

In this section we will give the resulting form of the linear system for the improved
boundary integral method. The ansatz for transforming this general system into the
standard form is very briefly mentioned again and a reference is given. The resulting
normal derivative boundary equation (7.1) for pi ∈ ∂Ũ and constant planar triangles

41



written-out:

1

2
υi +

n∑
j=1
j 6=i

 ∫
4Uj

∂G(pi,q)

∂npi
dq

 υj =
∂φin(pi)

∂npi
+

n∑
j=1
j 6=i

 ∫
4Uj

∂2G(pi,q)

∂nq∂npi
dq

φj

+

 ik
2
−

2π∫
0

eikR(θ)

4πR(θ)
dθ

φi

The Burton-Miller combined boundary equation (7.2) for pi ∈ ∂Ũ and constant planar
triangles written-out: i

2k
+

i

4πk

2π∫
0

eikR(θ) dθ + α
1

2

 υi +
n∑
j=1
j 6=i

∫
4Uj

(
G(pi,q) + α

∂G(pi,q)

∂npi
dq

)
υj

= φin(pi) + α
∂φin(pi)

∂npi
+

−1

2
+ α

 ik
2
−

2π∫
0

eikR(θ)

4πR(θ)
dθ

φi

+
n∑
j=1
j 6=i

 ∫
4Uj

(
∂G(pi,q)

∂nq
+ α

∂2G(pi,q)

∂nq∂npi

)
dq

φj

(7.15)

The resulting Burton-Miller combined boundary equation system:

(A+ αB)υvec =
(
φinvec + αυinvec

)
+ (C + αD)φvec

with A, B, C and D ∈ Cn×n and φvec, υvec, φ
in
vec and υinvec ∈ Cn.

υvec :=

υ1
...
υn

 φinvec :=

φ
in(p1)

...
φin(pn)

 υinvec :=


∂φin(p1)
∂np1

...
∂φin(pn)
∂npn

 φvec :=

φ1
...
φn



A :=



i
2k + i

4πk

2π∫
0

eikR(θ) dθ1

∫
4U2

∂G(p1,q) dq . . .
∫

4Un−1

∂G(p1,q) dq
∫
4Un

∂G(p1,q) dq

∫
4U1

∂G(p2,q) dq i
2k + i

4πk

2π∫
0

eikR(θ) dθ2
. . .

∫
4Un−1

∂G(p2,q) dq
∫
4Un

∂G(p2,q) dq

...
. . .

. . .
. . .

...∫
4U1

∂G(pn−1,q) dq
∫
4U2

∂G(pn−1,q) dq
. . . i

2k + i
4πk

2π∫
0

eikR(θ) dθn−1

∫
4Un

∂G(pn−1,q) dq

∫
4U1

∂G(pn,q) dq
∫
4U2

∂G(pn,q) dq . . .
∫

4Un−1

∂G(pn,q) dq i
2k + i

4πk

2π∫
0

eikR(θ) dθn
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B :=



1
2

∫
4U2

∂G(p1,q)
∂np1

dq . . .
∫

4Un−1

∂G(p1,q)
∂np1

dq
∫
4Un

∂G(p1,q)
∂np1

dq∫
4U1

∂G(p2,q)
∂np2

dq 1
2

. . .
∫

4Un−1

∂G(p2,q)
∂np2

dq
∫
4Un

∂G(p2,q)
∂np2

dq

...
. . .

. . .
. . .

...∫
4U1

∂G(pn−1,q)
∂npn−1

dq
∫
4U2

∂G(pn−1,q)
∂npn−1

dq
. . . 1

2

∫
4Un

∂G(pn−1,q)
∂npn−1

dq∫
4U1

∂G(pn,q)
∂npn

dq
∫
4U2

∂G(pn,q)
∂npn

dq . . .
∫

4Un−1

∂G(pn,q)
∂npn

dq 1
2



C :=



−1
2

∫
4U2

∂G(p1,q)
∂nq

dq . . .
∫

4Un−1

∂G(p1,q)
∂nq

dq
∫
4Un

∂G(p1,q)
∂nq

dq∫
4U1

∂G(p2,q)
∂nq

dq −1
2

. . .
∫

4Un−1

∂G(p2,q)
∂nq

dq
∫
4Un

∂G(p2,q)
∂nq

dq

...
. . .

. . .
. . .

...∫
4U1

∂G(pn−1,q)
∂nq

dq
∫
4U2

∂G(pn−1,q)
∂nq

dq
. . . −1

2

∫
4Un

∂G(pn−1,q)
∂nq

dq∫
4U1

∂G(pn,q)
∂nq

dq
∫
4U2

∂G(pn,q)
∂nq

dq . . .
∫

4Un−1

∂G(pn,q)
∂nq

dq −1
2



D :=



ik
2 −

2π∫
0

eikR(θ)

4πR(θ) dθ1

∫
4U2

∂2G(p1,q)
∂nq∂np1

dq . . .
∫

4Un−1

∂2G(p1,q)
∂nq∂np1

dq
∫
4Un

∂2G(p1,q)
∂nq∂np1

dq

∫
4U1

∂2G(p2,q)
∂nq∂np2

dq ik
2 −

2π∫
0

eikR(θ)

4πR(θ) dθ2
. . .

∫
4Un−1

∂2G(p2,q)
∂nq∂np2

dq
∫
4Un

∂2G(p2,q)
∂nq∂np2

dq

...
. . .

. . .
. . .

...∫
4U1

∂2G(pn−1,q)
∂nq∂npn−1

dq
∫
4U2

∂2G(pn−1,q)
∂nq∂npn−1

dq
. . . ik

2 −
2π∫
0

eikR(θ)

4πR(θ) dθn−1

∫
4Un

∂2G(pn−1,q)
∂nq∂npn−1

dq

∫
4U1

∂2G(pn,q)
∂nq∂npn

dq
∫
4U2

∂2G(pn,q)
∂nq∂npn

dq . . .
∫

4Un−1

∂2G(pn,q)
∂nq∂npn

dq ik
2 −

2π∫
0

eikR(θ)

4πR(θ) dθn


The dθi on the i-th diagonal entry of the matrices A and D also signifies, that the R(θ)
function on the i-th triangle 4Ui is meant.

As mentioned earlier, the general solution strategy for the resulting matrices (A+ αB)
and (C + αD) is to substitute φi into υi or vice versa through their boundary condition.

aiφi + biυi = fi for i = 1, . . . , n

The above method is outlined in detail in [Kir]. Once the boundary states have been
solved for, the solution for a point p in the interior of the domain can be acquired via:

φ(p) =φin(p) +

n∑
j=1

∫
4Uj

(
∂G(p,q)

∂nq
φj −G(p,q)υj

)
dq (7.16)
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Note that p /∈ ∂Ũ for (7.16), therefore all integrals can be solved directly via standard
Gaussian quadrature methods for planar triangles.
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8 The implementation

The collocation boundary element method was implemented in a program called 3d BEM.
The program consists of a simple script interpreter, a graphic user interface with 3d
viewer and the boundary element solver. The program enables a flexible setup of small-
scale acoustic simulations. One can define 3d mesh geometries in scripts or register mesh
files for complex geometries. Those geometries can then be manipulated and the mesh
can be refined to improve accuracy. Once the boundary data has been solved for, obser-
vation fields can be solved and visualized. Some simulations with 3d BEM are presented
in the following.

8.1 Radiating puck

The sound field from a puck of diameter 10 meters, with radiating boundary conditions
on top and Neumann boundary conditions on the other sides, was simulated at different
frequencies. The colour gradient from red (the maximum) to blue spans approximately
20db of sound pressure difference for each figure. The sound pressure is indistinctly lower
in the dark blue areas. λ states the wavelength. Note the interference pattern on figure
8.2.

Figure 8.1: The puck Figure 8.2: 100 hz
λ ≈ 3.43m
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Figure 8.3: 6.25 hz
λ ≈ 54.88m

Figure 8.4: 12.5 hz
λ ≈ 27.44m

Figure 8.5: 25 hz
λ ≈ 13.72m

Figure 8.6: 50 hz
λ ≈ 6.83m
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Figure 8.7: 100 hz
λ ≈ 3.43m

Figure 8.8: 200 hz
λ ≈ 1.715m

The simulation shows the characteristic transition from wide radiation to beaming
behaviour for a plane constant-phase source with rising frequency.

8.2 Spherical scatterer

Figure 8.9: 10 hz
λ ≈ 34.3m

Figure 8.10: 100 hz
λ ≈ 3.43m

The simulation shows a point source field, scattered by a sound hard sphere of 10m
diameter. The red-blue gradient range is 40db.
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9 Conclusion

The presented collocation method is only the crudest form of the boundary element
method, but due to its relative simplicity and computational efficiency it is widely used
in practise. In the following we give some observations on its application, mention
important omissions and introduce open questions and further ideas.

9.1 Theory on the Helmholtz problem

Though not covered in this text, but essential to the boundary element method for
Helmholtz problems is the mathematical theory for the Helmholtz problem itself. Apart
from Sommerfelds radiation condition, we have not examined the question of well-
posedness for the exterior and interior Helmholtz problem with the different boundary
conditions or source terms. This demands further investigation.

9.2 The coupling parameter

The coupling parameter α ∈ C of the Burton-Miller combined boundary equation (7.2)
poses an open question. In [Mar15, page 17] the author states, that an the exterior
Neumann problem with Sommerfelds radiation condition has a unique solution and that
’an optimal choice of the coupling parameter depends on the frequency and, most likely,
on the problem. Therefore, the search for an optimal coupling parameter appears to be
very complex ...’
While referring to the same Neumann problem, the author of [CCH09, page 165] states,
that ’it can be shown that provided that the imaginary part of α is non-zero, then
[the Burton-Miller combined boundary equation] has a unique solution for all real and
positive k.’ The author of [ZCGD15, page 50] also takes the latter postition and gives
further insight into how the combined boundary equation supposedly penalises the fic-
tious eigenfrequencies. This subject has to be further investigated by the author of
this text. Furthermore answers to the problem of uniqueness for impedance boundary
conditions are sought.

9.3 Convergence of the method

Even though the collocation method is widely used in practice, there has not been a
publication of generally valid convergence statements. There exist so far only wider
convergence statements for higher order methods (at least linearly approximating test
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functions on the boundary) [Sto04, page 27]. As a rule of thumb for ’engineering accu-
racy’, the author of [CL07, page 30] gives 5-10 elements per wavelength in each direction.

9.4 Computational observations

The arising matrices of the boundary element method are generally fully populated,
asymmetric and of size n × n with regard to the number of boundary elements. This
imposes severe limitations on the magnitude of the computable problems due to time
and memory constraints. The duration of straightforwardly solving the resulting linear
system via LU-decomposition and forward and backward substitution is in the order of
magnitude n3. Therefore a basic boundary element method is realisticly limited to a few
thousand boundary elements on standard computer hardware. An important observation
is, that all matrix entries are independent of each other and therefore the problem can be
considered embarrassingly parallel. There have been multiple very successful advances
in compressing the information in large boundary element matrices, one notable being
the fast multipole method. In the fast multipole method, elements that lie close together
are grouped to a single source with regard to their influence on other elements that are
further away. The resulting complexity is given in [Sto04, page 71] as O(n log2(n)). The
authors of the open-source BEM Matlab/C++ toolbox, called NiHu, claim that their
fast multipole method accelerated toolbox ’can solve problems of industrial size on a
single desktop computer’ [FR14, page 10] and demonstrate an example problem with
200.000 elements.

9.5 Further ideas

This paper concludes with a brief mention of two interesting ideas. Generally the domain
U can be decomposed in smaller subdomains, which are then interfaced via boundary
conditions on the ’artificial boundaries’. These boundary conditions impose equality
constraints on the sound pressure and the particle velocity on both sides. An approach
is outlined in [SW11]. Also mentionable is that there exist also Green’s functions for
the wave equation, which enables the derivation of direct time-domain boundary el-
ement methods. This is in contrast to the earlier mentioned ansatz to reconstruct
the time-domain behaviour of the solution by Fourier-synthesis with frequency-domain
(Helmholtz) solutions.
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